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1 .0 INTRODUCTION

1.1 General Discussion

Advanced applications of robotic and automation technology to

manufacturing processes and to remote environments such as space

and underwater require the performance of complicated but somewhat

unspecified tasks. These tasks, usually performed by humans, are

unspecified in the sense that they are goal-oriented but without -. :.-

detailed algorithms or methodologies. Furthermore, automated

systems capable of performing these tasks must often operate with

incomplete or incorrect process models, noisy sensor data, and '

various constraints.

Tasks for robots can be classified in a number of ways. We

tend to define the tasks into two broad classifications -

deterministic and non-deterministic. Deterministic tasks tend to -..

be dominated by geometry, part placement, pegs-into-hole, machine

load/unload, etc. (Figure I-I)(1).

Non-deterministic tasks are those done by skilled people

involving processes for which models either do not exist or are

poorly understood. Other non-deterministic tasks involve k
inspection or data interpretation and planning( 2 ,3 ). , .. " _..

The hypothesis of this grant is that the non-deterministic

class of problems is amenable to the techniques and methodologies

of control system engineering, a discipline which provides a

tractable approach for addressing the issues for intelligent

systems with cost effectiveness and performance optimality.

The objectives of this grant are:

a. To explore the use of adaptive-learning control systems

to complex processes, or engineering-based expert systems

to an inspection type task. Both types of tasks, which

are usually performed by humans, involve modeling and

control or automatic data interpretation in the presence--'-

of noisy data with incomplete and time-varying models.

• . *. ; °
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b. To determine the relevance of these approaches to

research on intelligent robotic systems.

c. To determine a focus for testing these theories both

analytically and experimentally, if possible.

1 .2 Problem Statement . N-.z..,

Present-day industrial robots and programmable automation

systems(4 ,5 ,6 ) generally perform deterministic tasks. These

systems operate with minimal sensing and use a control strategy

based on open-loop positioning. That is, the reproducibility of

the process is determined by the reproducibility of the machine,

the tooling used to hold parts, and the quality of the parts

themselves. Sensor requirements for deterministic tasks are

modest, mainly monitoring or sequence verification. Examples are

presence/absence of parts, task initiation/completion, unexpected

hazard and safety. There is a range of sophistication. The

classic example is pegs into chamfered holes(1). Early work

suggested 6-axis force sensing and control,(7-10) which is

intellectually interesting but a little slow, complicated and

expensive. More clever devices(11,12,1 3 ) were faster and less

complex. The Remote Center Compliance (RCC)( 11 ,1 2 ) is even

simpler, requires no sensing, has reasonable bandwidth, and is

relatively inexpensive (Figure 1-2). More interesting is the

problem of pegs into square or non-chamfered holes - "chamferless

insertion." At the Draper Lab, the solution has been a kinematic

inversion(1 4 ,15 ) (Figure 1-3). It is simple and elegant but

seldom used. A more interesting solution is a software kinematic

inversion (16 ) using the Instrumented Remote Center Compliance

(IRCC)( 16 , 17 ). The IRCC is simply the RCC with added positional o

sensors for monitoring the displacement of the engineered

compliances of the RCC. Since the compliances are known the

position sensing can be interpreted as a displacement vector

* ~. . . *.*.. . .. % .
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caused by positioning errors, angular misalignment, small hole ,. ,%-

or high piece part tolerances or as a force vector resulting from

such errors.

Other uses of the IROC arise from having a "smart finger" on

the end of the robot. Automatic teaching, automatic calibration/

recalibration, time-position error monitoring are some of the

applications( 16 ). Typical devices have 3 to 6 axes of

measurement, so it is possible to monitor either the principal

errors or the full error vector including time and environment

dependency. Since IRCC's have relatively large position motion.

compared to 6-axis force sensors(1 8,19 ), they are easier to z

protect from mechanical overloads.

The above listing of tasks and technologies are merely

illustrative. Admittedly, there is a slight bias towards using

the minimum technology to accomplish the desired task.

Non-deterministic tasks are more interesting and challenging

technically. Further, they provide the intellectual base and

arguments for intelligent robots. At this point, we really have

not attempted to completely classify them. Some classifications

are tasks involving process control, monitoring/inspection tasks, r
and planning tasks. Problems, of course, can be hybrids of these

three. Assembly systems usually involve all three. Today the

three activities are usually discrete; manufacturing functions

are not an integrated activity.

Figures 1-4 and 1-5 illustrate the two types of tasks that ,

have been explored under this grant(20 ). Namely, a process task

and an inspection task. Automatic planning functions are not part

of this grant. However, similar approaches to planning can be

found in references (2) and (3).

N
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Figure 1-4 illustrates a manual grinding/finishing task and

Figure I-5(20,21) illustrates the data interpretation task of 0
low-speed dynamometer torque traces for precision ball bearings.

Figure 1-4 represents the type of process tasks done by skillful :-.,-'.-

people. Typically these are tasks where complete or partial

process models do not exist, performance requirements are not

quantifiably stated, and process parameters are time and
environment dependent. Yet these tasks are routinely carried out -.[

by people. For the task shown in Figure 1-4 (automobile body

finishing) the typical process sheet instruction to the operator

states "grind it smooth." The trivial question is "What robot

system or mechanization can you turn to and tell it to 'grind it

smooth '?"

The grinding/finishing task involves three complicated

activities and several minor ones. The principal ones are

surface reconstruction, process control, and dynamic surface

measurement interaction. By surface reconstruction we mean

discrete surface measurements and associated algorithms necessary

to describe the surface in some convenient computational frame of

reference. Minor tasks involve establishing a common

computational frame of reference for relating all the process . .

parameters: actual car body location, actual car body shape, and

errors in the robot arm.

Weld beads are typically 10-15 mm wide and 2-5 mm high,

although much larger and much smaller ones can be found. The

bead, in general, lies on a curved surface in space, and the task

is to remove the bead and leave the surface the same general

shape, with the bead region interpolated in some nonlinear way in

the surrounding region.

The data interpretation, or inspection, task shown by Figure

1-5 represents the type of task done by people with judgement

developed from many years of experience( 22 ). The basis for

their judgement is generally founded on incomplete understanding

of the underlying physics. The problem for the operator is to

determine whether the low-speed dynamometer data recorded

indicates that the bearing is good or bad and whether it will have

.", .. .. "

. -. . .- <...... ... . .. . . .,.. . . . . . . . . . ........- ......-..... , ,. ,..----,-
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a long or short life expectancy. The operator must determine if .A

the lubricant is sufficient or has degraded (increase in the

average noise level), if the bearing contains particles of

contamination or has metal damage (specific torque artifacts), if .

there is misalignment between bearing pairs, or whether the

bearing preload is correct.

1.3 Research Focus

The initial problem posed as a research focus was the process

problem - manual finish grinding of automobile body filler

material used to cover seams between body panels. The prime focus

was shifted away from this topic for two reasons. First, it was

extremely difficult to develop a reasonable grinding model for

testing our theories in the time frame of this grant. The second

reason was that since we had two grants in this area (NSF1 and

ONR) a broader research program would result if there were two

foci instead of one. That is, one focus on process tasks and the

other on inspection tasks. .-

Before the shift in focus occurred, the problem had been

divided into two major research activities: a) geometry or

surface reconstruction of a surface from height measurements above - -

a reference plane, and b) process control. One S.M. thesis on

surface reconstruction was generated during the time frame(23).

The principal focus of this grant during this past year has L

been the inspection or data interpretation problem. The test bed

for testing theories was the low-speed dynamometer used for

testing precision ball bearing assemblies.

Inspection tasks are important because automating groups of *
tasks usually requires multi-level inspection to be performed.

Levels vary from simple binary go/no-go decisions, which are

1 NSF Grant No. ECS-8214366, reference (22) .

So - ° -*
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easily automated, to more complex questions which cannot be V.

answered readily. Decisions on higher inspection levels often

must be made by experienced experts or well-trained consultants.

One test used to inspect precision ball bearings prior to, ..

during and after their assembly is the low-speed dynamometer (LSD)

test. The low speed dynamometer( 24 ), shown in Figure 1-5, .wwd
measures the drag torque between the bearing races while the

bearing is rotated at a slow speed. Manual inspection of these

analog traces can reveal significant information on the quality of

the bearing including the presence/absence of dirt particles,

metal damage to balls or races, lubrication degradation and . , .

bearing retainer hang-up. Individual torque traces, as well as an

ensemble of traces over time, are important in determining the

acceptability of the bearing.

The hypothesis that we used is that this class of problems is

amenable to the techniques of control system engineering and '" "

artificial intelligence - particularly a new technique called the

engineering-based expert system.2  The engineering-based expert

system captures, algorithmically, the capabilities of human

"experts" and trained process operators in an efficient and

cost-effective manner. It combines techniques of process modeling

and identification, signal processing and detection, pattern

recognition, hypothesis testing, control theory, as well as the

conventional expert system's rules and heuristics.

The general objective of this research was to apply *.

engineering-based expert system techniques to complex ist.

manufacturing tasks which traditionally require the expert or

artisan skill of a human.

2 %
2 The concept was new when this grant proposal was written

several years ago. Since that time a number of people have become .

interested in this approach.

* 4 .,°
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1.4 Report Organization
* -I

The research carried out has demonstrated the feasibiity of

an engineering-based expert system for the inspection task

chosen. Further, a Navy program office has decided to implement

the technique into a production environment in one of their

suppliers of precision mechanisms.

The remainder of this report is organized as follows:

Section 2.0 Research approach.

Section 3.0 Research, prototype system, and

comparison with the manual method. .,.

Section 4.0 Conclusions, and recommendations for

further research.

... ~.... -

-
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2.0 RESEARCH APPROACH

2.1 Traditional Expert Systems

Artificial intelligence (AI) may be loosely defined as the m l
science of enabling machines (computers) to learn, reason, and

make decisions. The expert system is an AI system which performs

a specific function normally performed by a human expert. The . . .

term expert implies that a substantial amount of acquired skill

and knowledge is required to perform the function. The AI expert .
system must embody the required knowledge and have an algorithmic

structure by which to process external inputs in the context of *'...-.

this knowledge. In the traditional expert system, the knowledge

exists in the form of heuristic rules. These rules are heuristic

because they are derived from experience rather than fundamental

scientific principles. Physical models based on first principles '

are seldom explicit in the knowledge base but may be implicit in -'-'-*

the rules specified by the expert. In this way, the traditional

expert system is imitative; it attempts to duplicate the human's

reasoning process without attention to the underlying science of

the problem at hand. An overview of traditional knowledge

representation methods may be found in reference( 25 ).

The algorithmic structure by which the rules are implemented

can be one of several types( 26 ). The forward-chaining or

data-driven structure proceeds from the available data and invokes "*'[--

rules as required to find a path to a goal or conclusion. in the

backward-chaining or goal-driven structure, a goal is specified by

the hypothesis of a conclusion. Rules are then invoked and data

is acquired to verify all necessary antecedent conditions or

subgoals. Thus a path from the data to the conclusion is found in

reverse. In general, the nature of the problem dictates which

structure is more favorable. It is possible to combine

forward-chaining a d backward-chaining.

The traditional expert system concept has been applied to the

fields of medical diagnosis, machinery troubleshooting,
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geophysical exploration, engineering design, and many

others( 26 ). A very brief summary of a few successful systems is

presented here.

In medical diagnosis, expert systems are used to deduce

medical conditions given a set of observed symptoms. Perhaps the

best known system is MYCIN( 27 ). MYCIN was developed in the

1970's at Stanford University to aid physicians in the selection

of antibiotics for the treatment of severe infections. The system . 109 r.

contains about 500 rules associated with medical diagnosis which

are implemented in a goal-driven architecture. MYCIN incorporates

the capability for the user to inquire why and how conclusions

were reached. Although generally considered an academic success,

MYCIN has not been accepted in the health care industry. MYCIN is

not used to detect symptoms, only to analyze them according to

heuristic rules defined by an expert. Another medical diagnosis

system, PUFF(28 ), incorporates the ability to automatically

acquire data on a patient's pulmonary functions. This data and

background information supplied by a physician are interpreted

according to a set of 55 "if-then" rules to diagnose pulmonary

function disorders. Much work has been done in the automatic

interpretation of electrocardiograms using statistical pattern

recognition methods( 29 ). However, these systems are generally

not considered expert systems because of their basis in pattern

recognition and signal processing rather than heuristic knowledge.

Expert systems have been developed for the diagnosis of

machinery. One such system, CATS-( 30 ) is being used to

troubleshoot diesel electric locomotives. CATS-i uses 7:777

approximately 530 rules in a forward and backward chaining logic

to interactively diagnose locomotive problems and suggest repair

procedures. Like MYCIN, this is a consultation system and

includes no means of acquiring data except through a human

operator.

In geophysical exploration, expert systems can be used to

identify geophysical structure and features (e.g. oil or mineral

deposits) from seismic measurements. One such system, PROSPECTOR,

S -.°.=

.. % °.
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has located a previously unknown molybdenum deposit( 2 6 ). Like

MYCIN, PROSPECTOR has no understanding of the basic physical

principles underlying its conclusions but is based on a large (but

still incomplete) set of heuristic rules.

Expert systems for design have been developed for a number of

applications such as the design of V-belt drive trains

(VEXPERT)(3 1 ), complex gear train design (IMP)(32 ),

configuration of computer components (Ri)( 26 ), and heat

exchanger design (HEATEX)(3 3 ). Some systems, such as VEXPERT,

attempt to embody the methodology of design in rules. VEXPERT

uses a Design-Evaluate-Redesign architecture which is applicable

to a variety of problems by substitution of the appropriate

analysis algorithms and constraints. Other programs such as

HEATEX, which uses 115 rules and formulas to design optimal heat

exchangers, and IMP stress the analysis inherent in design rather

than the methodology. The analytical formulas and design "rules

of thumb" associated with a particular problem indirectly .-.

represent physical models. The application of these formulas and

rules is, however, largely heuristic. RI is a data-driven system *o

used to determine the physical layout and interconnection of .\ i

components of computers based on rules of thumb. RI is in routine .%. -

use.

All of these systems are based on emulation of the human "' . *55*.

expert. Logic is rule-based, where the rules are those which the :

human has chosen to use. Where explicit analysis is required, as

in some design systems, the algorithms selected-are those which *
the human can best understand. We argue that these rules and ,

algorithms, which are apparently well-suited to the human mind,

are not necessarily well-suited to a digital computer.

2.2 Ehgineerin-Based Expert Systems .,

The traditional expert system is a problem solving technique

which is well suited to problems which cannot be rigorously

analyzed for lack of understanding or due to inadequate analysis

techniques. For example, medical science is not fully understood

* .5555-.*....-°-..
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and the use of heuristic knowledge obtained from experienced

physicians is necessary in creating systems for diagnosis and

treatment. However, if the underlying physics and mathematics of

the problem are sufficiently well understood, then the use of

heuristic knowledge may not be appropriate. Wherever possible,

mathematics is the preferred representation of knowledge for

precision, clarity, and the ability to be verified. Figure 2-1 X

illustrates the typical spectrum of problems and problem solving

techniques. Problems range from clear, well understood, fully

analyzable to fuzzy, poorly understood, and not analyzable. The p

applicable classes of systems range from engineering analysis

systems to traditional expert systems. The middle ground contains '-:-/"*...

problems which are partially analyzable but also require some

degree of human expertise. This class of problems is the domain

of the engineering-based expert system. Admittedly, the

boundaries between these classes is a matter of arbitrary

semantics. However, the salient feature of the engineering-based ,

expert system is the integration of rigorous analytical techniques

with heuristic techniques. .

The engineering-based expert system is the result of a ..

combination of formal engineering analysis, mathematical

processing techniques, and traditional expert system techniques.

Analysis leads to a fundamental understanding of the problem and

the development of models which can be augmented by the heuristic .

rules of the expert. The models represent precise knowledge about

the problem and the heuristic rules capture the skills of the

expert. Mathematical processing can be substituted for human .-*-***

perception and reasoning processes which cannot be adequately -.*

expressed as rules. Mathematical techniques may also be used to

enhance data prior to the application of heuristic rules by

filtering or transforming to a more convenient form. Determining

the boundary of analyzability and the optimal combination of . .

heuristics and analysis for particular problems is a future ,..**.

research issue.

Analytical models and heuristic knowledge have been

integrated for expert systems in renal physiology(3 4), for

k

~~~. . -..*...J.. . . . . . . . %.% %,% % %% _ .. %.
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process control( 35 ), for control of a nuclear reactor( 36 ), and

for intelligent automatic control systems( 37) in general.

Mathematical processing techniques from the fields of

estimation and control, signal processing, and statistical pattern

recognition have been applied to a variety of expert problems such

as radar and sonar detection( 38 ,39 ), electrocardiogram

classification( 29 ,4 0 ), speech recognition (38), and

geophysical testing( 38 ). These signal processing and pattern

recognition systems are not usually considered expert systems

because they do not mimic human actions. However, these

analytical methods are an important part of the engineering-based '-.\ >

expert system concept.

The advantages of the engineering-based expert system

a; approach are numerous:

1. Because of the engineering analysis, rules may be stated

in terms of any physical parameters of the problem rather

than those solely perceived by the human. Furthermore,

redundant or conflicting heuristic rules can be

systematically eliminated.

2. The system will be more adaptable to changes in the

problem or the environment because many parameters will

have a known physical significance. Those changes will

be accommodated by parametric variations rather than

through structural changes to the system.

3. Efficient mathematical processing can be substituted for

less efficient and possibly unpredictable symbolic

processing. S

4. The engineering analysis will allow rules to be stated in .. ,

a more concise form and mathematical processing will be .

the preferred knowledge representation. Therefore, the

total number of rules may be reduced.

.,.

,," , .
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These advantages are exemplified by the LSD analysis system

described in reference (21) and in section 3 of this report.

2.2.1 Knowledge Requirements

The knowledge base for the traditional expert

system consists of rules specified by the human expert.

These rules are usually stated in a symbolic rather than

mathematical form.

The knowledge base for the engineering-based expert

system consists of both process models and rules. The

process models are the result of formal analysis and

represent, in a concise mathematical form, knowledge

about the process of interest. The models may express

an exact deterministic relationship between the process

parameters, inputs, and outputs, or they may express a

probabilistic relationship between the parameters,

inputs, and outputs (a stochastic model). The rules - - - -S

associated with the engineering-based expert system may

be different and fewer in number than the heuristic

rules associated with the traditional expert system.

This knowledge base can be more extensive than that

of the traditional expert system because the process

models may contain information that is not explicitly

known by the expert or information that is only implicit

in the expert's heuristic methods. In many cases, the

experts do not understand the underlying mathematics and

physics.

Table I summarizes the distinction between the

knowledge bases of the two systems. • 0

.5

. ............................. . . . .
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Table 1: Knowledge Bases

Traditional Expert System Engineering-Based Expert System

Rules derived empirically Rules derived from rigorous
from expert analysis of process

Little or no physical insight Physical insight through
into process process models

Indirect access to process Explicit access to process
variables variables

, -. . ,

- ..• .
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2.2.2 Algorithmic eaquirements .. A--

The primary tool used by the traditional expert

system is symbolic logic. Data are processed by making

a series of decisions according to the rules specified

in the knowledge base.

The engineering-based expert system operates using

- Signal processing and estimation

- Pattern recognition

- Hypothesis testing

- Process models

as well as symbolic processing. The intensive use of

numerical computation differs from the traditional -
expert system approach which relies almost totally on

symbolic processing. In general, algorithms may be

implemented in a data-driven architecture or a .-

goal-driven architecture. Most signal processing

techniques are inherently data-driven, while hypothesis

testing can be goal directed.

The distinction between symbolic processing and

numerical processing necessitates different hardware and

software configurations for the two approaches. Most

current symbolic processing languages have inadequate

numerical manipulation capabilities. Likewise,

conventional numerical processors and languages

frequently have inadequate symbolic processing

capabilities. The engineering-based expert system ..-.

requires both capabilities and therefore has unique

architectural and language requirements.

• ,.. . . . . . . .. a ,- .- % -- .d ..X..-" t .
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3.0 THE IAW-SPEE) DYNAMOMETER INTERPRETATION SYSTDI

3.1 Introduction to the LSD Research Problem - -

An important issue in manufacturing is part inspection and

quality control. Inspection operations may provide information

about the condition of individual parts as well as information

about the status of the manufacturing system. The complexity of

inspection operations may vary from simple binary tests, such as

the presence or absence of a component, to tests involving

extensive measurement and evaluation procedures. The simple

operations might easily be automated because only binary yes/no

decisions are required. The more complex operations often require

trained experts to interpret results and make decisions. These

complex decision processes can be automated by embedding the

experience and knowledge of the expert in a computer program. %

An example of a complex inspection operation is the low-speed

dynamometer (LSD) used to test instrument quality ball bearings

during their manufacture, assembly, and integration into -" -.

components(2 4 ,4l). The LSD, illustrated in Figure 1-5, measures

the torque required to rotate a bearing or bearing assembly at a

slow speed - typically 1 revolution per minute. At this slow

speed the lubricant film is thin enough to allow virtual

metal-to-metal contact between balls and races. Two major

mechanisms contribute to this low-speed drag torque: sliding

friction forces due to pivoting and slipping motions in the

ball-to-race contact zones and geometric profile forces due to

asperities of the ball an] race surfaces. In lightly loaded

instrument quality bearings, the geometric profile torque can be

as large or larger than the friction torque. The torques can be

distinquished by operating the LSD in two directions - friction

torques will reverse polarity with reversed direction while -"

qeometric profile torques will not. The torque is usually

measured and recorded for 1 or 2 revolutions of the bearing.

Measured torques from both mechanisms can reveil significant

information about the condition of the hearing. The sliding
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friction torque is indicative of the loading of the bearing and

allows the LSD to be used to adjust bearing preload and to 4,

identify misalignment of paired bearings. Geometric profile

torque can indicate ball or race surface roughness, damaged balls -

or races, and particulate contamination. The characteristics of .

the data can be used to determine the exact nature of the
geometric profile.

Traditionally, the LSD measurements are interpreted by a

trained expert who visually inspects analog plots of bearino drag

torque. Although there are deterministic physical relationships

between the condition of the bearing and the torque measurement,

the expert's methods are essentially empirical. He relies chiefly

on visual recoqnition and experience to assess the quality of the

bearing.

This problem falls into the "middle ground" of Figure 2-1 -.

where the physics can be explained intuitively but are not fully

analyzable. Therefore, the engineering-based expert system is the ... "

appropriate technique for automation. The remainder of this

chapter will describe the system that was carried out. Section

3.2 describes typical bearing problems that are revealed using the

LSD. Development of detection algorithms and acceptability

criteria for bearing artifacts is delineated in Section 3.3. The

algorithms and criteria were developed and implemented a computer

system which performs LSD interpretation at the level of an

expert. The performance of this system is characterized in

Section 3.4

3.2 Characteristics of LSD Tbrque Measurements

Typical time plots of LSD torque measurements are shown in

Figure 3-1. Figure 3-1(a) shows a measurement of the low-speed

drag torque for 2 revolutions of a bearing of acceptable quality.

Figures 3-1(b) - 3-i(e) show torque measurements for several

unacceptable bearings.

Figure 3-1(b) shows a torque measurement exhibiting metal

damage. The ,netal damage is characterized by sharp excursions in - -

torque which moves first in the direction of decreasing magnitude * i



-24-

• , .".t.'...

(a) Acceptable LSD Torque Trace.

* (b) LSD Torque Trace Displaying Metal Damage.

- ,-'I:'-

(c) LSD Torque Trace Displaying Partizulate
Contamination.

20- (d) LSD Torque Trace Displaying Retainer .
- Hang-Up.

(e) LSD Torque Trace Displaying Misalignment •
20- of an Assembled Pair.

.% .. JV

Fig. 3-1. Typical LSD Torque vs. Time Plots

- " .
.

"- .... . . . . . . ... . ?i .. .. & S..A. ":*. :.- -":-"..
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as the ball (or race) rolls into the area of damaged metal %-I

followed by increasing torque as the ball (or race) rolls out of

the damaged area.

Figure 3-1 (c) shows a torque measurement exhibiting

particulate contamination. The contamination is characterized by

sharp excursions in the torque which move first in the direction

of increased magnitude as the ball (or race) rolls onto the

particle followed by decreased magnitude as the ball (or race)

rolls of the particle.

Figure 3-I (d) shows a torque measurement displaying retainer

hang-up. This is evidenced by a slow torque excursion due to

increased friction from excessive rubbing of the retainer on balls

or races.

Figure 3-1(e) shows a torque measurement displaying ' *

misalignment of a preloaded bearing pair. Misalignment results in

a sinusoidal torque variation at the bearing rotation frequency.

The distinction of well-developed features associated with

different flaws is generally reliable and the expert has no

problem identifying and classifying flaws on the basis of these

patterns. The expert must identify the bearing problem rather

than make a simple good/bad decision because certain problems can

be easily resolved whereas others may be irreparable. For

instance, contamination can be resolved with a thorough cleaning,

but metal damage requires replacement of the race or ball.

If the bearing defect artifacts were as sharply defined as

illustrated in Figure 3-1, this problem would be straightforward

to solve and not a suitable candidate for research. The artifacts

are not, however, distinct. A single torque trace may exhibit

more than one defect. There is no guarantee that different

bearing failure modes are mutually exclusive. For example, a *
bearing may suffer from particle contamination, metal damage, and

retainer hang-up at the same time. It is important to detect all %

of these failure modes because each requires a different action on

the part of the assembler. In addition, the salient

characteristics of the artifacts associated with each failure mode

are sufficiently different that no single pattern recognition or

signal processing technique is likely to be effective for all

. , .% o " ° .. % °., " " .. , '.,..% '-. ° % ' ". " "• " ". -. , - , °'% .. .' ', ,.",- ' °' '. ",", ,,* "
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modes. The development of the various detection algorithms and

acceptability criteria is described in the next section. 4

3.3 Development of the LSD Interpretation System

3.3.1 Interpretation Rules

The LSD expert evaluates the quality of bearings by

visually inspecting analog time-histories of torque and

interpreting them according to a set of largely

heuristic rules. Below we list some of the rules

employed by the experts at the Draper Laboratory's

Bearing Center. The rules presented here represent only

the top-level rules. A purely heuristic rule-based

approach to expert system design would require many more

rules and sub-rules to define many of the concepts

introduced in the top-level rules. •

These rules were obtained by interviews with the

experts. This was a tedious process which evolved over

a long period of time (over six months) and required

many iterations. The difficulty of obtaining such rules

is well documented( 26 ,42). In the end, the expert

system engineers themselves became experts in LSD

interpretation. This was instrumental in the derivation

of the system to be described.

Rule 1: A bearing is acceptable if no abnormalities (to

be defined below) can be detected in the LSD torque

measurement.

Rule 2: The state of assembly of the bearing must be

considered in the interpretation of the LSD torque

measurement. p.

Rule 3: The first torque measurement obtained from a

new bearing determines the baseline average torque and

07 :
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baseline peak-to-peak torque amplitude for that bearing.

Rule 4: The average torque and peak-to-peak torque

amplitude must be less than or equal to those of the %

last test made on the bearing.

Rule 5: The magnitude of the average torque level must .

be within certain specified bounds.

Rule 6: The peak-to-peak torque amplitude must be

within certain specified bounds.

Rule 7: A torque excursion is defined as a rapid

variation of torque from its average value.

Rule 8: Metal damage is manifested by torque excursions

of decreasing torque followed by increasing torque.

Rule 9: Particulate contamination is manifested by

torque excursions of increasing torque followed by '. .

decreasing torque.

Rule 10: Misalignment of assembled bearing pairs is

manifested by torque which varies sinusoidally at the

rotation frequency.

This set of rules introduces concepts such as

torque excursions which are very difficult for the

expert to define verbally. In fact, the best

description of such phenomena that the expert can give

is to show examples. The engineering-based expert

system approach overcomes this difficulty by applying a

mixture of signal processing, spectral analysis, and

pattern recognition techniques in addition to geometric

and physical modeling of the torque generating

mechanisms. The underlying philosophy of this approach

is to unify the replication of human methods with

. ..... >..>-.-

-.. .~. - . . ' . "., " . _... "._. ' .'.'..¢ ' . ' ' ' ' ,,. .q .. , .L 4L.# "
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physical insight into the process (the mechanics of the F.

bearings) and well established signal detection

techniques. The detection of metal damage is a good

example of this unification. It is known that the human

expert identifies metal damage by the presence of blips

of a certain shape in the torque trace, such as those 4

shown in Figure 3-1.

Furthermore, the nature of these blips can be

explained by intuitive models. An automated system

capable of detecting metal damage blips must unify the

visual mechanisms of the human expert and the modeled

torque generating mechanism.

In addition to the interpretation rules, the expert

employs some numerical criteria for acceptance of

bearings. Typical acceptability criteria for an

instrument bearing are listed in Table II.

3.3.2 Data Models

The signal detection and pattern recognition

techniques used in the engineering-based expert system ", .. .

are based on data models for all of the relevant

features (e.g. metal damage blips) of the torque

measurement. In general, such data models may be

physical (derived from principles of physics) or

functional (based on observed data characteristics and

statistics). In the case of the LSD procedure,

intuitive physical models exist for all of the torque

generating mechanisms of interest. Metal damage,

particulate contamination, and poor surface quality

produce geometric profile torques which have been

rigorously analyzed( 4 3 ). These mechanisms are

sensitive to many parameters such as the size, shape,

and hardness of particles which are unknown and cannot

'' ;. . . . . . . . . . . . . . . . . . . . . " ,';
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be estimated. Furthermore, the exact values of such ,-

parameters are not of interest in evaluating a bearing.

Therefore, functional models are used to describe the •

observed LSD data. These models are discrete-time

models because the automatic interpretation system will .% .. ' .1

operate on digitized, sampled data.

Figure 3-2 illustrates the overall data model for

the torque data produced by the LSD. The measured

torque is considered the sum: -.- "

T total (k) = T + T (k) + T (k) + T (k) + T (k) (1)
0 1 2 3 4

where T0  is the mean torque,

T1  is the hash torque,

T2  is the torque due to misalignment,

T 3  is the torque due to contamination,

T4  is the torque due to metal damage, and

k is the time index "-

Such a model will always be possible if one

component of the right-hand side of equation (1) is

allowed to be an arbitrary function. In this case, the

hash torque, T1 , is defincr' to be the component of

measured torque which cannot be accounted for as mean

torque, misalignment torque, particulate contamination, •

or metal damage. Therefore:

T (k) - T (k) - T - T (k) - T (k) - T (k) (la)
1 total 0 2 3 4

. o-.- .°-

-.. . . .. . . . . . . . . . . . ... .- . .,

.° * *°* , .°.. .

.9 o ".-.".*.*. . °

. . . . . . . . . . . . . . . .. . .".. . .. "° . ,'". , % . ° " 'o°. °° " .,. '. ° .. '-°* ,° ' -
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Hash Torque

Misalignment T2(k)

Torque

Ttota.i.

Particulate T3 (k)

Contamination

171

Fig. 1-2. Basic LSD) Data Model
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The nature of the individual torques are such that

different modeling techniques are used for each. The

chosen models are the basis for the detection schemes

employed by the engineering-based expert system. The

following models are used for these components of the L.;A 1.

torque. 0

Mean Torque: By definition, all other torque

components are zero-mean. Therefore To is the

arithmetic mean of Ttotal.

Hash Torque: The hash torque is modeled as an

arbitrary random noise sequence.

A convenient method to capture the statistical behavior

of such a signal is the autoregressive model. The "" "

autoregressive (AR) model(44,45 ) is a parametric model ,

for the behavior discrete-time signal. It is

essentially a discrete linear system excited by white

noise. The parameters of the system are chosen to

produce desired statistics of the output. The AR model

is a convenient representation for the hash torque for

several reasons.

1. It is a spectral matching method. It is, in fact,

an efficient method for estimating spectral

densities( 46 ).

2. Many methods exist for choosing the model

parameters to optimally model a given signal.

3. The statistical behavior of a signal can be

described using a finite number of model

parameters, greatly reducing the data storage

requirements.

-' " . - . - - - - . .- - - . - .- --
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4. It is a discrete linear system driven by white ,.

noise.

The AR representation for the hash torque signal T, (k)

is

p

T 1 (k ) = - a T1 (k-n) + u(k)
n=1

where

an are the model parameters,

p is the model order, and

u(k) is the driving white noise.

The spectral density of an AR process given by

Equation (2)

q

0(w) = (3)

p
n I

n=1

where q is the intensity of the input u.

The model order, p, and the model parameters,

San}, are chosen to match observed spectral properties

of a given signal. A method for choosing the parameters

is given in Appendix A. This method can be applied to 0

LSD data which is judged to free of defects (i.e.,

T2 E T3 E T4  0) to estimate the parameters.

Misalignment Torque: The misalignment torque is known

to be a sinusoid at the frequency of bearing rotation:

.* '%

* - * * * -* - * - * * * . -* . .. °--.",° .* --- .-- "

... ', , . '''.,. '...,' '.. .' ,-, . .. ,..; -,--.--*' ".'•% ,,'% '-. '... -'''',...-'-" -*'--.-" --- "-. "'-. "" -,.. -, % .
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T2 (k) = A cos (QkAt + 69) (4)

where A is the misalignment amplitude and

8 is the phase of the sinusoid.

At is the sample interval.

Particulate Contamination and Natal Damage:

Because of their similar nature, particulate

contamination and metal damage can be modeled

similarly. They will be modeled as a low-density shot

noise process( 47 ,4 8 ). The general shot noise process

is

s(t) = b h(t-t) (5)
i .3.."-.°•.-

where h(. ) is a qiven function,

Itij is a set of Poisson points, and

Jbil is a set of purely random variables independent

of Iti}.

An interpretation of the shot noise process is a series

of time functions, h(t), occurring at random times. For

the purpose of modeling metal damage and particulate

contamination "blips," the function h(t) can represent

the shape of such a blip, ti will represent the

unknown times of occurence of the blips, and hi will

represent blip intensities. To formulate a -.... '.

discrete-time shot noise process, we require that the

sampling interval, At, is small enough so that

XAt c 1

(6)

. . . - .-. . . ... . . . . . .. .. . . 2. . . . . . . . • .1 . . . . . .. .
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where X is the Poisson parameter (average density of

events) a series approximation of the Poisson

probability function given by (47)

n

P (t) = Pr{n events in time period t}= _42 en. n

(7)

can be stated as

Po(At) i At (8)

P 1 (At) = XAt

Pn(At) = 0 n>1

The physical interpretation of this condition is that no

more than one event (blip) may occur during one sample

interval, At. Furthermore, the probability that an

event will occur during any sample interval is XAt.

3.3.3 Detection Algorithms

Given the LSD data models described in the previous _

section and illustrated in Figure 3-2, the first

function of the engineering-based expert system is to

decompose the torque measurement, Ttotal, into its .'

relevant components. The algorithms to perform this S

decomposition are signal processing algorithms based on .

the models for individual torque components. The

requirements of these algorithms are stated below.

* S
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1. The system will operate on digitized data sampled

with uniform sampling period At.

2. The computations do not need to be performed in

real-time, therefore we are not restricted to

real-time, casual systems. 
V.

3. The results of the processing algorithms must be:

the value of the mean torque, the number and

magnitudes of particulate contamination and metal

damage blips, the magnitude of misalignment torque,

and the amplitude and spectral properties of the

hash torque.

The architecture of the system is illustrated in

Figure 3-3. The overall approach is subtractive -

individual torque components are estimated and removed

from the data in succession.

The data is assumed to consist of finite records of 77

N samples of torque sampled with period At. The

individual signal processing techniques are described...

below.

Mean torque: The estimated mean torque, To is the

sample mean of Ttotal

N-I

T 0 t (k)

N i=O total

Misalignment Torque: The misalignment torque is a

sinusoidal torque of a known frequency. Therefore, its

amplitude and phase may be estimated by a Fourier

decomposition of Ttotal.

.. ,.'. .~*** %... .... ...
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Mean Torque T -

I % 0

EstimateA
MisalignmentT

Torque 2
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3 4 lssf

Separate Blips

Blips frA
Hash Torque T

A 4

*T

Fig. 3-3. Architecture of System
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T (k) =A COB (QAt +0) (10)
2

-B COS fiAt + C Bin Q~t

where

A = B 2 +C 2

e tan- 1 (C/B)

2 N-i1
B CO 02 ~ o i A t) [Ttotai (i) -TO] (11)

N i -0r

2 N-i1
C si (Q (iAt)[Ttotal(i)- TI (12)

N i=0

Separation of Hash Trque from Metal Damage

and Particulate Conta-ination

Having detached the mean torque and misalignment

torque, the remaining task is to separate the blips from -

the hash torque. Based on the expert's definition of -

torque excursion as a rapid torque variation, a ~
threshold detection algorithm can be used to distinguish 5

blips from hash torque. Using the symbol Z(k) to denote

the torque measurement without mean or misalignment;.

-V.
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Z(k) =T 1 (k) + T3 (K) + T4(k) (13)

and the symbol v(k) to denote blips of both types:

V(k) =T 3 (k) + T4 (k) (14) A

we may write

Z(k) =T 1 (k) + V(k) (15)

The AR model, equation (2), may be used as a predictor

for the hash torque:

p
T(k) a T~ a (k-n) (16)

n= 1

and a pseudo-measurement, Zl(k), can be created,

* Z1 (k) -Z(k) -T()(17)

=v(k) + U(k)

which consists only of blips and white noise. We may

then apply a threshold to the pseudo-measurement to

detect blips on the basis of their magnitude:
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Z (k) -Y if Z (k) > Y

v(k) = 0 if Izl(k) <,Y

Z (k) + y if Z (k) < -Y

(18)

where -y is a predetermined threshold. The threshold

value must be selected according to the magnitude of the

blips which must be detected and the known statistics of

the white noise, U(k). Because only estimates of the

hash torque are available, we must create an updated

estimate,

T (k) = Z(k) - v(k)

(19)

a.. . .

to drive the predictor:. -

pp

T (k) = - a T (k-n)
1 n

n=1

(20)

T1 (k) is an a priori estimate of the hash torque

because it is made without knowledge of any

measurement. fl(k) is an a posteriori estimate of the -

hash torque because it is made after the measurement is

available. This nonlinear filtering scheme is

illustrated in Figure 3-4. A more detailed derivation

.................

. o .o _
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Z(k) __________________________

THRESHOLD DETECTOR

Fig. 3-4. Nonlinear Filter for Detecting Metal Damage and
Particulate Contamination Artifacts
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is given in Appendix B. Typical output is illustrated -.

in the lower plot of Figure 3-5.

The principle of operation for the filter is that

the AR predictor, equation (20), is used as a whitening

filter to reduce the amplitude of the hash torque before . . ..

applying the threshold.

The detection algorithms are summarized in Table --
III.'" """" '

Work is ongoing to apply statistical pattern

recognition techniques to the problem of detecting metal '

damage and particulate contamination. A master of .

science thesis is in progress which will apply the

Karhunen-Logve method of feature extraction( 49 )• This

method will permit the detection of arbitrary signals

based on a learning set provided by the experts. In

this way, the process of describing such signals

heuristically can be circumvented. This thesis will be

completed by August 1985. •

3.4 Performance of the LSD Analysis System

The detection algorithms described in the previous section

are combined in a software architecture illustrated in Figure

3-6. The analysis software was written in the C programming

language and currently runs on an IBM XT personal computer. C is

an efficient, modular and structured general purpose programming

language. Its flexibility allows it to be useful for low-level

data input as well as high-level graphics routines.

The torque data from the dynamometer is sampled and digitized

at 50 Hz. The dynamometer has a bandwidth of about 18 Hz (see

Appendix C). The first operation of the system is to calculate

the sample mean and variance of the torque measurement. A bearing

can be rejected if the mean torque or torque variance is too

large. The mean and variance are not, however, sufficient to

identify the nature of the failure. The second element of the

% . . -"
0%.-.

.
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TORQUE .**

DATA

CALCU LATE

AND TEST

MEAN AND
VARIANCE
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RESULTSTEST

RESULTS

Fig. 3-6. Software System Architecture
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system is the nonlinear filter to detect and remove artifacts due

to metal damage and particulate contamination. Running totals of

the number of such artifacts are maintained. The remaining torque

data (after removal of the metal damage and contamination blips)

are tested for misalignment (if appropriate) and then tested for -

excessive amplitude in two frequency bands - above and below 1

Hz. The signal below 1 Hz contains the effects of race

out-of-roundness and misalignment. Misalignment is detected as -. ,- -

described in the previous section. The signal above 1 Hz contains

the effects of lubricant degradation and poor surface finish - the

causes of "hash." The bearing will be rejected if the average

amplitude in either of these frequency bands exceeds preset

values.

The analysis system has been throroughly tested on over 50

digitized LSD torque traces from routine tests of G-Star Momentum '..

Wheel ball bearings at various stages of their assembly. The

automatic analyses have been consistent with the judgement of the - -

experts. Appendix D contains a summary of the automatic A-

analyses. The analysis system has exhibited a more sensitive

threshold of detection. This, as a consequence, has heightened

sensitivity to the issue of how the LSD test results relate to

bearing life. Previously, the criteria of acceptability were

based solely on the sensitivity limit of the expert. The expert

rejected a bearing if he could detect any artifacts of failure .

modes. As greater sensitivity can be achieved, however, the

criteria of acceptability must be adjusted to reflect the actual

operational requirements of the bearing rather than the limits of

artifact detectability.

Sample output from one LSD analysis is shown in Figures 3-5

and 3-7. The upper trace of Figure 3-5 shows the raw dynamometer

data from one test on a bearing. The torque signal contains both

low and high frequency components as well as blips. These blips

are indicitive of either metal damage of particulate , "V -

contamination. The lower trace is the torque data after the

nonlinear filter and threshold detection have been applied. Here,

only the spikes remain; the low and high frequency components are

subtracted from the upper trace. This portion of the signal is

. . . . . . . .. .. . .. '. .0 ,*



-47- .

LOW SPEED DYNAMOMETER
BEARING ANALYSIS PROGRAM

Version 2.0

Friday December 20. 1985 File: data.47A

TEST INFORMATION

Configuration: DUMMY WHEEL Bearing ID(s): 124 B 130 B
Direction: CCW Load: 9.000
Preamp atten: x4 Transducer lene: 4.000
Operator: SS Moment arm: 1

MEAN TORQUE TEST

measurement: mean torque value
value: 9. 377427
decision: mean value within bounds

TORQUE VARIANCE TEST

measurement: variance of torque
value: 1.121466
decision: variance out of bounds

BLIP DETECTION & CLASSIFICATION

B violation.: 7 Metal damage
* Particulate contamination
1 Undetermined blips . .*

METAL DAMAGE
point 726 max: 0.39 min - 1.78I
point 1296 max: 1.87 min: -4.53
point 1938 max: 1.98 mins -4.74
point 2722 max: 2.64 mint -4.89
point 3419 max: 1.13 min: -3.78
point 4054 max: 0.57 min: -2.43
point 4804 max, 2.04 min: -3.97

UNDETERMINED BLIPS
point 566 max: 0.06 min: -4.55

POWER SPECTRUM ANALYSIS

measurement: amplitude < I Hz
value: 0.990287
decision: excessive amplitude

measurement: amplitude • 1 Hz
value: 1. 372677
decision: excessive amplitude

MISALIGNMENT TEST

measurements minumoidal amp 1/60 Hz
value: 0. 124058
decisions misalignment not detected S

Fig. 3-7. Summary Results for a Typical LSD Analysis

', ,.* .° "
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3.

analyzed by the blip detection algorithm. The clean data (raw

torque data minus the blips) is analyzed for misalignment (on

bearing pairs) an4 is spectrally analyzed in a low and high

frequency band.

Figure 3-7 is a summary of the test results. The top of the

summary contains information which uniquely identifies the bearing

and the LSD test parameters. The result of the mean torque test .

is shown next. In this case the mean torque is within acceptable

limits. The torque variance, however, is too high. This fact

would have been visually recognized by the experts and the bearing

would have been rejected. The results of the blip detection and

classification algorithm indicate that the seven of the eight

blips shown in Figure 3-5 are a result of metal damage and one

blip cannot be positively identified as either metal damage or

particulate contamination. The misalignment test is not performed,.- "

since only a single bearing is tested (i.e., not a bearing pair).

The power spectral analysis indicates excessive amplitude in both

low and high frequency bands. The analysis of the LSD test

indicates the bearing is damaged. The torque variance, metal

damage blips and excessive amplitude render this bearing

unacceptable. The bearing must be dismantled, cleaned and the

source of metal damage identified.

The analysis results of an acceptable bearing are shown in

Figures 3-8 and 3-9. The torque traces (Figure 3-8) show and the

summary information (Figure 3-9) confirm that this bearing

contains no metal damage or particulate contamination. The

bearing is within acceptable limits in the other tests: mean

torque, torque variance and power spectral analysis. This bearing

is acceptable and would have continued in its integration into a

component. 0

, . - -
* S -..-
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Scaled dynainopeeter data aata.33A

IF, ~ ~ ~ ~ ~ ~ p ~f p -T

Filtered aynamsmeter data

Fig. 3-8. Acceptable LSD Data: Raw and Filtered
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LOW SPEED DYNAMOMETER

BEARING ANALYSIS PROGRAM '.1 .
Version 2.0

Friday December 20, 1985 File: data. 33A

TEST INFORMATION

Configuration: SINGLE Bearing ID(s): 131 8

Direction: CCW Load: 9.000

Preamp atten: X5 Transducer sens: 4.000

Operator: JL Moment arm: I

MEAN TORQUE TEST

measurement: mean torque value

value: 6. 537896

decision: mean value within bounds

TORQUE VARIANCE TEST

measurement: variance of torque

value: 0. 160510

decision: variance within bounds

BLIP DETECTION & CLASSIFICATION

0 violations: 0 Metal damage

0 Particulate contamination

0 Undetermined blips

PWER SPECTRUM ANALYSIS

measurement: amplitude < 1 Hz * L

value: 0. 767208

decision: acceptable excessive

measurement: amplitude > 1 Hz

value: 1.083914

decision: acceptable amplitude

Fig. 3-9. Summary Results of an Acceptable LSD Analysis

2 .
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4.0 MO1CLUSIONS AND RBOMMDIATIONS .

4.1 Conclusions of Present Research ,

The original hypothesis of constructing intelligent modules

for non-deterministic tasks with control system engineering and

-p artificial intelligence techniques has been explored. Results- ,

from this exploration have been twofold: the development of the

engineering-based expert syitem method of analysis and the

demonstration of this method in automating a complex task

typically performed by a human expert. 0

The engineering based expert system has been shown to be

effective in solving a certain class of problems. Problems

characterized as falling in between those for which mathematical

process models exist and those described completely by human 0

expertise are amenable to this approach. There are a great many

of these "partially analyzable" problems that exist where this

approach should prove interesting.

One such task, that of inspection of precision ball bearings, -

has been automated using the principles of the engineering-based

expert system. The automated system has been demonstrated to be ""

as sensitive to bearing defect artifacts as the expert is. The

system will be undergoing extensive development and improvement

over the next year because funding has been received to install

the ball bearing inspection system on the factory floor of one of

the Navy's suppliers of precision mechanisms.

4.2 Recommendations for Further Research

The promising nature of the engineering-based expert system

-- methodology and its successful application to a complicated -.

inspection task leads us to consider extending our work into two

"" different directions: horizontally, across tasks different than .... .'

inspection of precision ball bearings; and vertically, deeper "-.

into ball bearing manufacture. In other words, use the automatic

data interpretation work as an entry to explore the research

issues for an intelligent manufacturing system for bearings.

. --..
...................................................... .-. .- N- i la
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The engineering-based expert system method is generic in the

sense that is can be applied to a range of problems. We have

chosen one particular task to test the method. The LSD .

interpretation fits into a category of problems which are analyzed

by a combination of mathematical and intuitive models and human

heuristics. We feel that there are many problems similar to the

ball bearing inspection problem which can be automated using the J .

developed methods.

Analysis of low-speed dynamometer tests give detailed ?.

information concerning the specific condition of the bearing. The--

bearing, at the time it is tested by the LSD, has undergone many

manufacturing processes. All of these processes contribute to the

final condition of the bearing at the time it is tested. The

stages of manufacturing of a bearing and the attributes associated

with them are illustrated in Figure 4-1. Bearing attributes can

be categorized into types, principal and physical. Principal

attributes are characterized by component mechanics, surface

chemistry, materials and metrology. Physical attributes are

specifically related to the manufacture of the balls and races.

Attributes which fall into this category are clamping methods,

types of tools and materials and processing data like treatments..., .

While the LSD has been designed to test the bearing after all the

manufacturing processes have been completed, it is thought that it

also contains information that can be related to the physical

attributes of bearing manufacture. Specific research issues

include whether the analysis of LSD data provides information

concerning the manufacturing of the bearing in addition to

information regarding the specific condition of the bearing. If

so, the LSD may be used as a feedback mechanism in the entire

bearing manufacturing process. The use of the LSD in this manner S -

is an interesting area for future research. "

The research hypothesis is that the low-speed dynamometer .

test data contains significant information that can be related

directly to attributes of bearing manufacture. Whether there is

enough information to successfully control the manufacturing

p . . P * ** -. . . ..- * p-p

rC. - e".:.
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V.

processes is one of the key research questions. Also types and
V

needs of additional information sources would also be a key

ingredient of a research program to explore these issues.

~.
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APPENDIX A

AUTOREGRESSIVE PROCESSES

The AR process is a convenient parametric model for the
behavior of a signal. It belongs to a more general class of
discrete processes known as linear predictors(45 ,46 ). The
linear prediction model approximat,:j a signal s(n) as the output
of a linear filter driven by white noise.

u(n) s(n)
AN H(z)

The filter transfer function is assumed to be of the rational form

q

b blz-l ..

1=0
H(Z (A-1) '.

1+~ akz-k

k=1 k

The corresponding difference equation is%

p q

s (n) 4 - a s(n-k- I 1 ~n1
k 1)+ bunl (A-2)

k=1 1=0

which shows that s(n) is a linear combination of past outputs and
past and present inputs. If q=0, then Equation (A-1) is an
all-pole or infinite impulse response filter and s(n) is an AR
process.

p

s(n) = a s(n-k) + b u(n)
k .0

k=1 (A-3)

Finally, note that because u(n) is assumed to be zero mean white

noise, the optimal estimate of s(n) from past values is

:he-
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p
s(n) -E a ks(n-k) (A-4)

k=0

Equation A-4 illustrates the use of the AR model as a linear

predictor. The prediction error or residual is

".e(n) s(n) -s(n) b bu(n)(-5

Parameter Estimation

Given a signal 9(n) to be modeled as an AR process, the

parameters ak are chosen to minimize the mean square prediction

error

[e a s(n-k))]E e'nJ E[(s(n) +kE1 ak (A-6)

E [e 2 (n)] =E [s 2 (n)] + 2 1 a E[~~~-)
J= kE[nsn-]

p p
+Eak E a 1E [s(n-k)s(n-l)j (A-7)

k=1 1=1

Necessary conditions for minimization are

... E( e2 (n)] =0 k =1 ... p

a k (A-8)

*from which we obtain

p
2E [s(n)s(n-k)1 + 2 E a E [s(n-l)s(n-k)k] 0

1=1 1(A-9)

.



-A3-

if s(n) is a stationary signal, its autocorrelation function is

R (in) =E [s(n)s(n-n)] (A-10)

s.

so that Equation (A-9) reduces to

% %A

Z a R (1-k) =-R (k)(-l)'
1is s (-1

to be solved for k=1, 2 .. ,p. These are the normal

equations(45).

Parameter Estimation from Noisy Measurements

The AR coefficients may be computed from the normal equations
(A-11) given an estimate of the first p terms of the
autocorrelation function. In a mo re general problem, it is
desired to fit an AR model to a signal s(n) given a measurement

z(n) =hs(n) + v(n) (A-1 2) 5

where h is a known parameter and v(n) is white noise.

The measurement noise has the property that

E [v(n)v(k)] r6 r% (A-i13)

E [v(n)s(k)] =0 (A-i14)

The autocorrelation function for the measurement is

R (in) =E [(hs(n) + v(n)) (hs(n-m) + v(n-m))]
z

h E [s(n)v(n)] + E [v(n)v(n-m)J

+ hE [s(n-m)v(n)I + E [v(n)v(n-m)I

2
hRx (m 6om (A-i15)

.5 J.



The orml euatonsmaybe rewritten in terms of thea ~~~experimentally obtainable measurement autocorrelto 5 a

p 

-

E a [R z(1-k) r- 1k -R z(k), k-1, p. pA16

1=1b

r6].k" (A1

7* 1=7
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APPENDIX B

THRESHOLD DETECTION OF METAL DAMAGE AND PARTICULATE CONTAMINATION

This appendix describes a method of identifying suspected

particulate contamination and metal damage artifacts in low-speed

dynamometer (LSD) torque measurements. The method is based on threshold
detection with particular attention to the selection of the threshold
value and to the reliabiity of the test. An extension is made to take
advantage of correlation in the measurements. It is proposed that this
algorithm can be used to locate suspicious features in the torque
measurement as a "front-end" for a more powerful pattern classifier.

Figures B-1 and B-2 show an acceptable LSD torque measurement and
one exhibiting metal damage artifacts. The metal damage is -

characterized by almost periodic "spikes" in the torque as the damaged
metal area is contacted by a mating ball or race, Particulate
contamination produces a spike that is similar but of opposite
magnitude. Figures B-3 and B-4 show metal damage and particulate
contamination artifacts, respectively, on an expanded time scale. The
method described here is developed under the assumption that the

detection of these artifacts can be approximated by or reduced to (by
deconvolution, for example) the problem of detecting impulses in random
noise.

Stochastic Modelling of LSD Torque Measurements

The torque measurement, z(t), will be modelled as the sum of a
continuous random variable, w(t), and a series of random impulses, v(t);

z(t) = w(t) + v(t) (B-i)

where w(t) has a known probability density function (PDF), Pw(x), and

v(t) is the "shot effect"( 46 ,47 )defined by

v(t) = a. 6 (t-t,) (B-2)J J ,.. -.-,

where aj are random intensities and S
tj are Poisson distributed event times.

The intensities, aj, have a known PDF, Pa(x).

• °. "- 0

.. ..-.....-.
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Fig. B-1. Acceptable LSD Measurement
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Fig. B-2. LSD Measurement Displaying Metal Damage q..
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The random variable w(t) represents the noise in an acceptable ,."-.
measurement as shown in Figure B-i and v(t) represents the changes in torque

created by balls rolling over particles or damaged metal. If the bearing is
acceptable, then v(t) = 0 for all t.

The LSD measurements are sampled with period T such that

z(k) = z(kT) = w(k) + v(k) (B-3)

If the sampling period, T, is small enough so that. -

where X is the Poisson parameter (average density of impulses) then the

Poisson probability function [46) given by

(,t)n _,t "".,:
Pn (t) Pr{n events in time period ti e (B-5) :."

can be stated approximately as

P0 (T) 1 AT

pl(T) = AT (B-6) _

Pn(T) = 0 n>1 -

r ' '

This means that the probability of an impulse at any time step is AT; .

Prjv(k) 0J = I - AT (B-7a)

Prjv(k) 01O = AT (B-7b) .,

A PDF for the random variable v(k) may be written as follows;

pv(x) = (1 - AT) 6 (x) + XTPa(x) (B-8)

which indicates the finite probability, 1 - AT, that v(k) is exactly zero.

The PDF of the measurement, z(k), is the convolution (denoted by *) of
the PDF's of w(k) and v(k), i.e. -

(x W p~ (x p W(x

=( - T W ATP (X) * Pa(x) (B-9)
Sw a

* . . . . . . . . . . . . . . . . . . . ...-
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Threshold Detector I.
We shall define two complementary hypotheses:

Hypothesis Hrj: v(k) 0

Hypothesis HI: v(k) * 0

The decision rule is as follows; _ _

Accept H0 if Iz(k) - zi <Y Y accept Hi if Iz(k) -z > Y.

Restated, if z(k) varies from its mean value by a difference of Y or greater, .'."-

then assume that an impulse is present. Two types of errors are possible.
An error of the first kind (false alarm) occurs if H, is accepted when H0 . •
is true. An error of the second kind (undetected impulse) occurs if H0 is
accepted when H1 is true. The conditional probabilities associated with
these errors are

P., Pr{ Iz(k) -Z1 > Y H0} = Pr{ z(k) -zI >Y Iv(k) =0 (B-10) ..-. K,

P 2  Pr{ Iz(k) -zl < Y IH1} = Pr{ Iz(k) - <75 jv(k) 0 01 (B-11)

These error probabilities can be expressed as:

P,~. 1 (B12

f
z --

P2p (x) * pa(x)dx (B-13)
j w a

2 f-
Y

If costs Q, and Q2 are associated with errors of the first and second
kinds, respectively, than an optimal threshold value, I, can be found by
minimizing the expected loss function;

J= QP + Q2P (B-14)

The probability that the measurement z(k) exceeds the threshold values

can be found using equations (B-9), (B-12), and (B-13) to be

*-.-.. -.

._u''.: '. .? '..". .' . ."."v".'." . .' " , '.-.'' ' .. ,. . .,:.,,., . ... V .. ':'.'_..'..':.''...' .,€: -. ",'' -'- ,''. .- ;- ,
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(1 - X.T)(1 - P-6 (B-1 5)

Special Case - Gaussian PDF's

If w(k) and aj have the following probability densities;

2/ 2

-(x - ) 2
(x) _ 

(B-16)

W 2" 

-

w

-x - )2 2 I--.
i(x /20

1 a

a 
(B-17)

2v| aa

and if (because XT << 1)

(B-18)
4 ..

then the error probabilities may be written

Y 2 2x a ,/'2..,..

= e ''

-Y
1-F- + F-B-)

y -a
•2 2 2

x x/2(a a

I'2 e dx

2-
2ir (a +0 aJ w a

P2 edx -". ". "a

,.* _..-t.,,- .., .,..
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(a- a2/w 02) 2 F 2 + (B-20)

2w+ L a o o%

where F(x) is the probability integral

x

F(x) = e du. (B-21) .. A

For the variances;

2 2 2a7 =a( =aG"'.'-"

w a

and for several values of y and a, the error probabilities are given in Table
B-I. These examples illustrate, as might be expected, that the technique can 0
be made most effective as the ratio N/a becomes large.

Filtering of Correlated Measurements .- -

In the foregoing development, no assumptions about the random variable,
w(k), other than knowledge of its a priori PDF have been required. We have
not required that w(k) be uncorrelated. If w(k) is correlated, then lower
error probabilities could be achieved by taking advantage of the
correlation. One possible method would he to use a linear predictor as a
whitening filter to remove the correlation of the noise, w(k), which masks .. ...-
the sought feature, v(k). This is illustrated in Figure B-5. We assume that
w(k) can be represented as an autoregressive (AR) process [44]; -

p

.-.-.-

w(k) = - E c w(k-j) + n(k) (B-22) 0
i-i

where cj are the AR coefficients and -

n(k) is uncorrelated noise with zero mean.
V..'.

,-o• ,..

So"o.
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Fig. B-5. Impulse Detector Incorporating Whitening Filter
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Y3 [ 4 6

P 1  .317 P 1  .317 P1 . .3171

P 2 = .077 P2 .017 P2 .00021

2P = .046 PI = .046 P1 = .046.

I ,  = .239 P2 = .079 p .002

P 1 = .003 P1 = .003 P 1 = .003'

P = .500 P2 = .239 P2 = .017'

TABLE B-I. Error probabilities for special case with Gaussian statistics and

w a

: -..

* 4" . '
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such that w(k) can be predicted using the filter

p0
w(k) = -j cjw(k-j) (B-23)

j=1

Using equations (B-3), (B-22), and (B-23), we create the "pseudo-measurementI

z '(k) = z(k) - w(k) = n(k) + v(k) (B-24)

and process this using the threshold impulse detector. If an impulse is
detected, its estimated intensity, v(k), is subtracted from z(k) for use by
the predictor.

If w(k) is correlated, then n(k) will always have smaller variance than
w(k) [44] and more reliable detection will result. The PDF of n(k) should be ...
used in place of that for w(k) when calculating error probabilities or
optimizing the threshold y.

,. . - ... . .,

*-: -TA
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APPENDIX C

RESONANCE FREQUENCY OF THE FORCE TRANSDUCER USED

IN THE LOW-SPEED DYNAMOMETER

This appendix analyzes the force transducer used to measure bearing .

drag torque with the low-speed dynamometer. The transducer is a

cantilever beam with strain gauges to measure deflection.

The beam used in these tests is 0.745 in. wide, 0.01 in. thick, and .-

has a free length of 1.80 in. It is made of steel.

As shown in Figure C-1, the system is modeled as a beam with one

end fixed and the other end attached to a rotational mass with a

frictionless joint. The rotational mass consists of the inner race of

the bearing and the part of the testing-set-up which leans on the beam

(shown in Figure C-2).

To calculate the resonance frequency, we first used a lumped '-L4

parameter assumption neglecting the mass of the beam, and then checked

the result with continuous system dynamics. The results showed that for

the size of the bearings of interest the mass of the beam can be assumed

negligible, in other words, the first method - which is an approximation

- can be used to calculate the resonance frequency.

Using the dimensions of the bearing shown in Figure C-2, the

calculated resonance frequency turns out to be:

lumped parameter result: fr = 17.53 Hz

continuous system result: fr = 17.20 Hz

To see the effect of the mass (size) of the bearing on the

resonance frequency, resonance frequency is plotted against the bearing

mass moment of inertia ranging from 0 to 0.01 lb-in 2 (Figure C-3).

(The bearing in Figure C-2 has an inertia of 0.0063 lb-in2 .) As one

can see from the plot (Figure C-3), between 0 and 0.003 lb-in- 2 , the

effect of the mass is very strong whereas after 0.006 it becomes quite :.."-

weak.
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APPENDIX D '-

RESULTS OF AUTOMATIC LSD DATA ANALYSIS

LSD data has been processed for 57 individual bearings and bearing
pairs. The results are tabulated below. The following defects are
tested for:

MT: mean torque exceeds limit
TV: torque variance exceeds limit . . .
MD: metal damage
PC: particulate contamination
UB: unidentified blips

LF: low frequency amplitude exceeds limit
HF: high frequency amplitude exceeds limit
MA: misalignment between bearing pairs

A bearing or bearing pair is considered to fail if one of the
following is true:

mean torque and torque variance too large
* metal damage detected
* more than 3 particulate contamination blips
. misalignment detected
& high or low frequency amplitude exceeds limit

Bearing(s) & Pass/Fail Identified Problems
Test Number -.. 06,

Individual Bearings ..- .

124 B-I fail TV,HF - .

124 B-2 fail TV, MD (3), UB, LF, HF
124 B-3 fail TV, MD (3), UB, LF, HF

129 B-i fail TV
129 B-2 fail MT, TV

130 B-1 fail MD (1), UB
130 B-2 pass

131 B-I pass
131 B-2 pass
131 B-3 pass UB S
131 B-4 fail TV
131 B-5 fail TV, UB
131 B-6 fail MT, UB
131 B-7 fail MT, TV, MD (5), PC (2), UB
134-1 pass
134-2 pass

. . , . -, . .. , . ..- . * .. . ... ,... . . -. . -.. , . ......... ... . - . .. , .. ,
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138 B-1 fail MD (2), tJB:z.
138 B-2 pass UB ,4.

142 B-i fail MT, TV, LIE
142 B-2 fail TV, MD (1 ), LIE

142 B-3 pass UB
142 B-4 pass UB

146 B-1 fail MT

146 B-2 fail MT, TV, PC (3), LIE, LF, HF
146 B-3 fail MT
146 B-4 pass PC (1, LIE

146 B-5 pass UB
146 B-6 pass UB
146 B-7 fail MD (6), LIE

146 B-8 pass PC (1), UB .
146 B-9 fail MD (7), LIE

146 B- fail UB
146 B-li1 pass LIE
146 B-12 pass UB
146 B-1 3 fail MD (1), LIB

K147 B-1 pass MD (3), UB
147 B-2 pass UB
147 B-3 fail MD (1) LI

Bearing Pairs

117 B-1 20 B-i fail TV, LIE, 12:0
117 B-2 B2 pass LIE

124 B-1 30 B-i pass.
124 B-1 30 B-3 f ail MD (4), PC (1), LIE
124 B-1 30 B-3 pass UB
124 B-1 30 B-4 pass-.
124 B-1 30 B-5 fail MD (1), PC (2) .

124 B-1 30 B-6 pass -

124 B-130 B-7 pass \- -

124 B-1 30 B-8 pass
124 B- 130 B-9 fail MD (1), UB0 *
124 B-1 30 B-10 fail TV, PC (1) UB
124 B-I 30 B-il1 pass UB, LF, HF

129~I.'- B- 1B1filTLH

129 B-1 31 B-i fail TVFH

134 B-1 38 B-i pass
134 B-1 38 B-2 pass PC (1)

141 B-142 B-i pas s
141 B-1 42 B-2 fail TV, MD (1) UB ~%

*%

. . . . . . . ... . . * . . . . .. . .. . .
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